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Abstract—A numerical analysis of two-conductor transmission

line with a rectangular notch in the dielectric between the strips is
presented. Three media integral equations are derived and solved

for the charge distributions. The decoupling between such two-

conductor coupled microstrip transmission line is investigated for

asymmetric conductors. It is found that the coupling between
two conducting lines can be reduced significantly by removing

dielectric material between the lines which has a rectangular
shape. For best decoupling, the width should be as wide as
possible between the conducting lines but the depth should have
an optima somewhere in the base dielectric substrate.

I. INTRODUCTION

I N THE LAST two decades, with the development of

electronic hardware, the trend of design has shifted from de-

pendence on both electrically and physically large components,

which are more independent of each other, to universal usage

of smaller and denser integrated circuits and systems which

are more tightly coupled. This appears to be continuing along

with the requirement for faster circuits and larger bandwidth.

With the universal use of smaller and denser circuits, the

operation of systems becomes much more dependent on how

signals propagate on the circuit interconnections. The related

coupling between circuit interconnections limits the bandwidth

of dense microwave circuits and the logic speed of digital

and computing circuits and systems. Previous study has been

devoted to characterize this circuit behavior based on planar

infinite-width substrate models [1]. However, it is extremely

important to find a practical method to minimize the coupling

between interconnecting lines.

In this investigation, attention is focused on the problem of

decoupling between a two-conductor microstrip transmission

line. One possible method is by employing a rectangular

dielectric notch between the two conducting lines as shown

in Fig. 1. The reduction of inter-line coupling can be accom-

plished by possible changes in the dimensions of the notch and

the relative pertnittivites of the substrate and notch region.

The transmission line problem shown in Fig. 1 can be

solved using a free-space Green’s function formulation in

terms of equivalent surface charge sources coupled with a

moment method solution [2] using a quasistatic TEM model.

This approach to planar type problems has been described

by Barrington and Pontoppidan [3], Adams and Mautz [41,
and, in a slightly different form, by Smith [5] and Smith

and Chang [6], [7]. A method for computing the normal

mode parameters of asymmetric coupled microstrip lines is

developed in [8]. Coupled integral equations are formed and

solved for the self and mutual capacitances of asymmetric
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Fig. 1. Cross-section of the two-conductor microstrip transmission line.

lines by moment methods. The asymmetric transmission lines

with finite length are discussed by Tripathi [9]. Terminal

characteristic parameters (impedance, admittance, etc.) are

derived in terms of two independent modes that propagate

in two uniformly coupled propagating systems. The theory

of quasi-TEM modes on coupled transmission lines in terms

of voltage and current eigenvectors is developed by Kajfez

[10], [11]. It has been shown that the even and odd modes

are possible only when the coupled transmission line is of

symmetric shape.

In this paper, integral equations in terms of equivalent

charges and a free-space Green’s function are derived by

enforcing the proper boundary conditions. Here, an ideal

model is considered, where the conductors are assumed to

be perfect, the dielectric materials are assumed to be lossless

isotropic and homogeneous and the thickness of the conductor

is assumed to be zero. The formulation used in this study is

similar to those in [5]–[7], however it is applied here for a

slightly more complicated geometry. An attempt is made to

find a method to reduce the coupling between two-conductor

microstrip transmission line.

II. BASIC FORMULATION

The integral ‘equations related to this study are develc)ped

by considering a two-dimensional boundary value probl~em.

The equations to be derived are valid for the general case of

three dielectric regions with perfectly conducting strips inside

one of these dielectric regions, as shown in Fig. 2. Region I

consists of a dielectric material of perrnittivity e1, bounded by
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Fig. 2. Generalized static problem.

contours C. and CC where C. = L’! + Cl’ + Cl f’. Region II

consists of a dielectric material with permittivity C2, bounded

by contours C5 and CC. Region III consists of a dielectric

material with permittivity C3, bounded by contours Ca, cb, Co

and Ct = Ca + cb + C.. Inside region III there are two

perfectly conducting strips Cl and C2 with surface charges

P.1 and P.2. The potentials #CO, 4G1 and @CZme ~own and
are constant on Co, Cl, and C2, respectively. However, neither

# nor 8$/&t are known on Ca, C5 and CC.

Laplace’s equation in the source-free region I is given by

vz+l(~>Y) = 0> (1)

where the free-space Green’s function region

V2GO(Z, !/; z’, Y’) = ‘c$(~,Y; z’,?/), (2)

can be considered with

Go(a, y;z’, y’) = -&ln
[(~ - &)2 +:Y - ~1)2]1/2 ‘ (3)

where both the field point (x, y) and the source point (d, y’)

are on contours C. and CC.

An integral equation for @l(z, y) can be derived by multi-

plying (1) by Go and (2) by #l. Then if these equations are

summed;

If both sides of (4) are integrated over the volume bounded by

C.+ C., Green’s theorem can be applied to obtain the relation:

41(X,Y)= H t)fb~ tlGo

1
Go%–~l= dS. (5)

c. +C.

In region II, the same procedure can be applied to obtain:

42(% Y)= /[ 6’$2i3Go

1
GO%– 42= dS. (6)

Cb–c=

In region III, the integral equation solution for Poisson’s

equation in terms of the source p, becomes:

A set of equations describing the potential everywhere can

then be obtained from (5), (6) and (7) as follows:

For region I:

41(X,Y) =
/[

tkjl dGo

1
Go= –#1= dS, (x$y) 61.

c. +Cc
(8)

and

o=
H

841 8G0
Go%–~lz

1
dS, (z, y) 6 H or 111.

c. +Cc
(9)

For region II:

42(X, Y)=
/[

a(b~ (3Go

1Go% –42= ds, (~, Y) EII
Cb– cc

(lo)

and

0=

/[

842 13G0
Go%–@2K

1
dS, (z, y) 6 I or III.

Cb– cc
(11)

The potentials in (9), (1 1), and (13) vanish because the

regions of integration do not contain the delta function from

the Green’s function relation in (2). If the contour Co is

assumed to approach infinity, the integration on that contour

does not contribute to the solution.

Equations (8) through (13) are combined by using the

bounda~ condition ~1 = ~z on CC, & = 43 on cb and

41 = 43 on c., which leads to one equation valid for regions
I, II and III, i.e.:

(14)

where i = I, II or III.



HE et al.; DECOUPLING BETWEEN TWO CONDUCTOR MICROSTRIP TRANSMISSION LINE 55

Since the integrand of the potential integral equation is

discontinuous on Ct, it can be represented in terms of three

equivalent surface charge densities. Thus, this three-dielectric

region problem can be represented in terms of two sources,

PSI and P92, and thee sufiace Chage densities, P., ob and ~.,

residing on the interfaces of homogeneous media Ca, cb and

CC, respectively. Therefore equation (14) reduces to

where C3 is replaced by Co.

For this mathematical model, the normal component of

the displacement vector D is continuous on the contours

separating the regions. This condition leads to another inte-

gral equation in terms of equivalent surface charges. If the

derivative of (15) in the appropriate region is taken and the

condition

‘2(-+’(-%)=0 ‘$Y)CCC‘1’)
is enforced, along with the extraction of the principal value for

the improper integral as the field point (z, y) approaches the

contour C., another integral equation can be obtained [12].

After some mathematical manipulations, the application of

(16) gives the following three integral equations:

+ (G-2 + l)% = O, (z, y) = Cb,

where Cl = CT1.EOand 62 = G-zco.

In order to specialize the general geometry in Fig. 2 to the

microstrip problem shown in Fig. 1, the contours Cl and C2

g 300

1

.. . . . .. mm.
m

-200 ■ Cll

u 10 C,*

100 A c~*

mooooooo~ 0
00

0.0025 0.005 0.0075 0.

1 m

o
t

Ooowooooo 0 0 0 0

)1

-50 ;
0.0025 0s005 0.0075 0.01

1 IN
(b)

Fig. 3. Convergence of capacitances. (a) Asymmetric. (b) Symmetric.

will touch C’ and C’”, respectively. The normal component

of the displacement vector D is then discontinuous by an

amount equal to the free-charge density on the conductors.

This discontinuity condition results in the following equation:

PSI + PS2 = ‘
+(%1 +1); +(% – 1) ~ ,

(z, y) c C’ or C’”.
(20)

Equations (15), (17), (18), (19) and (20) represent a set of

integral equations which can be used to solve for the unknown

charge densities p~l, P.Z, ff~, ffb and a., with ~Own Potential

~.1 ~d 4.2 on the conductive contours Cl and C2. These
equations can be reduced to a set of matrix equations by

using the method of moments. Pulse basis function and point

matching techniques using Dirac delta functions for testing are

employed for the numerical solution [2], [12].

After these charge densities are obtained, the capacitances,

Cll, Clz, Czl and C22 are easily derived. The characteristics
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100 TABLE I

COMPARISONOF COMPUTED RESULTSWITH THOSE
m [13] FOR B/H = 0.2, erl = 10, T/W’ = 5

80 This work From [13]

Wm=l.o Cll (pF/m) 141.48 141.77

C12 (pF/m) 56.44 57.56

~ee 7.222 7.209

eeo 5.713 5.699

V. (108m/s) 1.1164 1.1165

V. (108m/s) 1.2551 1.2558

z.. (ohm) 63.31 63.18

zoo (ohm) 31.32 31.00

WIH=2.O Cll (pF/m) 230.53 231.60

Clz (pF/m) 56.47 59.95

fee 7.786 7.777

feo 6.042 6.020

v. ( 108m/s) 1.0751 1.0750

v. (108m/s) 1.2205 1.2219

z., (ohm) 40.35 40.17

Z.. (ohm) 23.85 23.28
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Fig. 4. Charge distributions. (a) Single strip transmission line. (b) Symmetric

transmission line. (c) Asymmetric transmission line.

impedances, relative permhdvities, and phase velocities are

also computed based on the definitions in [11].

III. NUMERICAL RESULTS AND DISCUSSION

A general computer program has been written to obtain

numerical solutions for the microstrip transmission line shown

in Fig. 1. After these charge densities are obtained, the

()~
o 10 20 30

&r~

(b)

Fig. 5. Capacitances versus C,2 for L = 0.617. (a) Cl 1. (b) C’lz.

capacitances of an asymmetric two-conductor microstrip trans-

mission line and all other parameters, such as characteristic
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Fig. 6. Capacitances versus C,Z for D = B. (a) CI 1. (b) C12.

impedances, phase velocities, and effective permittivities for a

symmetric microstrip transmission line, are determined.

The convergence of our numerical solution can be observed

in Fig. 3(a) and (b) for asymmetric and symmetric trans-

mission lines, respectively. In these figures the capacitances

based on the configuration shown in Fig. 1 versus N which

is the order of matrix involved in the solution with equal

segments for the expansion functions are shown. In Fig. 3(a),

W1/11 = l, W2/WI = 2, D/13 = l, L/If = 0.6, B/H =
1, T/Wl = 5, ~.l = 16 and Crz = 31. For this asymmetric

transmission line, the relative percentage error between the

extrapolated and computed values of the capacitances in this

study, with N = 480, for C’ll is about 1.5%, for C12 (or

C’21) is about 4.1% and for C’22 is about 0.96%. Fig. 3(b)

shows the convergence of the capacitances based on the

best decoupling paraineters for a symmetric transmission hue

defined by W1/lY = 1, WZ/Wl = l, D/13 = 1, L/H =

0.6, B/H = l, Z’/~I = 5, cT1 = 16 and CTZ = 1, The relative

percentage error between the extrapolated and the computed

values, with N = 640, for (711 (or C22) is about 0.1670 and

for C12 (or C21) is about 4.7%.

In order to verify the numerical results generated by the

computer code, comparisons of few cases with published

data have been made. Fig. 4(a) shows the surface charge
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Fig. 7. Capacitances versus W2/W’l. (a) (711. (b) C12. (c) C22.

on a single strip transmission line which is a limiting case

of the two conductor transmission line by setting L := O

and B = Owith W = WI = W2, W/11 = l,erl = 16

and T/W = 5. The charge distribution in the figure is in

good agreement with those in Fig. 3 in [6]. In the figure., the
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Fig. 8. Capacitances versus L/H. (a) C’ll. (b) C’12.

charge density is normalized by Co, in order to compare with

the data in [6], Fig. 4(b) shows the charge distributions for

the even and odd modes of a symmetric line with Crl =

16, 13/H = 0.3, L = O, and W/H = 1. These charges

match those in Fig. 9 in [13]. The charge distribution on

an asymmetric transmission line are shown in Fig. 4(c), for

WI/17 = l, W2/Wl = O.l, B/H = 0.2, L = O, and Crl = 9,

The computed charge, as shown, agrees with those reported in

Fig. 7 in [8]. Table I gives a comparison of the computed line

characteristic parameters with previously reported results [13]

for a symmetric transmission line with e.l = 10, B/H =
0.2, T/W = 5 and L = O, which again indicates very

good agreement. Another attempt to validate the computer

code has been made by computing a two-conductor microstrip

transmission line without the notch, which is obtained by

letting cr2 = C,l, where D and L can be any value satisfying

the relations D < B and L ~ H which gave the same

numerical results, although not shown here.

With the developed program, the transmission line param-

eters of the geometry in Fig. 1 such as self and mutual

capacitances, characteristic impedance, phase velocity, and

effective perrnittivity are studied. With W/H = 1, 2’/ W =

5, B/H = 1 and erl = 16, the effects of D, L and C.2 on

the self and mutual capacitances between these two strips are
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Fig. 9. Capacitances versus D/B. (a) C’l ~. @) C12.

TABLE II
T= PARAMETERSFOR MINIMUM COUPLING

T %1 H B W2 VW e~ D L

5.0 16 1.0 1.0 1.0 1.0 1 1.0 0.6

5.0 16 1.0 1.0 2.0 1.0 1 1.0 0.6

5.0 16 1.0 0.5 1.0 1.0 1 0.5 0.7

5.0 16 0.5 1.0 1.0 1.0 1 1.0 0.2

5.0 4.7 1.0 1.0 1.0 1.0 1 1.0 0.5

2.0 16 1.0 1.0 1.0 1.0 1 1.0 0.6

shown in Figs. 5 and 6. Fig. 5 shows the capacitances Cl 1 and

c12 versus CT2 for L = 0.6H and D is a varying parameter,

while Fig. 6 shows the capacitances Cl 1 and Cl z versus EV2for

D = B and L is a varying parameter. In order to investigate

the decoupling between the strips, the mutual-capacitance (712

(or C21) is the most important factor to be discussed. As

can be seen, there is an intersection between the curves in

these figures. This occurs when C.2 = 16 (i.e., C,2 = C,l ),

which means that there is no notch between the two strips.

At this point, the capacitances should have the same values

because the geometry is the same. From Figs. 5(b) and 6(b),

it can be seen that C12 increases with cr2. This means that

the minimum can be obtained when er2 = 1, which represents
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the air-dielectric notch. This property shows that a possible

method for reducing the coupling between the strip lines is by

removing a rectangular material from the substrate between

the conductors. Fig. 7 shows the effects of changing the width

of one strip on the capacitances for various value of eTz, where

WI = H, T/W = 5, L = 0.6H, B = H, and E.l = 16. It is

clear that erz should be 1 in order to get the best decoupling.

Then, consider a symmetric geometry where W/H =
1, T/W = 5, B/H = 1, C,I = 16 and c,2 is fixed to

be 1 which leads to a removed rectangular dielectric notch.

The influences of various D and L on the self and mutual

capacitances between the strips are shown in Figs. 8 and 9.

Fig. 8 shows the influences of various L with different D,
while Fig. 9 shows the influences of various D with different

L. After studying these figures, some important properties can

be seen. From Fig. 9(b), it can be easily seen that for lbest

decoupling D should be equal to B which means that, the

width of the material to be remoyed between the lines should

be as wide as possible. Furthermore, from Fig. 8(b), the curve

which represents D = B shows a minimum value for L/H.
This means, that for best decoupling the depth of the material

to be removed between the lines should be approximately

L/H = 0.6. Thus, for best decoupling, D = B and L ~ 06H
for this microstrip line. It can be also shown in Figs. 8 and 9,
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that removing adielectric notch forces themtttual-capacitance

to decrease significantly, however, the self-capacitances do not

show significant percentage variations.

The parameters for minimum coupling between the strips

for six different geometries of the microstrip transmission

line are computed and listed in Table II. Fig. 10(a) and (b)

show the potential distribution around the conducting strips

for transmission lines characterized by the parameters in the

first and second rows in Table II, respectively, when both strips

are charged to 1 V (even mode). Whereas Fig. 11(a) and (b)

show the corresponding potentials when one strip is charged

to 1 V and the other is charged to -1 V (odd mode).

Furthermore, the influences on the characteristic imped-

ances, effective perrnittivities and phase velocities are studied

for even and odd modes of a symmetric transmission line

with WI = W2 = H, T/Wl = 5, B/H = 1,Crl = 16

and cr2 = 1. Fig. 12–14 show the characteristic impedances

(2.), the relative effective permittivity (cr.f ~) and the phase

velocities (V) for even and odd modes versus L/H and D/B.
It has been found that all these parameters do not significantly

change, in relative percentages, compared with the changes in

the mutual-capacitance. Because the phase velocities for both

modes appear to change in the same proportion, the coupling
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Fig. 14. Phase velocities. (a) 1- versus L/H. (b) V versus D/B.

frequency characteristics will be the same as a related standard

microstrip directional coupler [14].

IV. CONCLUSION

A numerical solution for the analysis of a two-conductor

microstrip transmission line with a rectangular dielectric notch

between two conducting strips is presented. The procedure

consists of formulating the necessary three media integral

equations for the numerical solution for the charge distribu-

tions. The decoupling between such two-conductor microstrip
transmission line is investigated. The solution is based on a

quasi-TEM approach where the thickness of the conductors is

assumed to be zero.

The coupling between circuit interconnections limits the

bandwidth of dense microwave circuits and logic speed of

digital and computing circuits and systems. It has been shown

in this study that the coupling between two conducting lines

is minimized by removal of the dielectric material between

the lines. The mututal-capacitance varies significantly when

this method is employed. With the removal of a rectangular

shaped material, it is found that the width should be as wide

as possible between the conducting lines but the depth should

have an optimum value depending on the remaining param-
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eters. One example has been given for symmetric microstrip

transmission line.

This knowledge related to the physics of the interconnecting

line decoupling for dense integrated and microstrip circuits is

useful in the design and development of faster IC chips and

broader bandwidth microwave circuits for communications

required in future microwave and millimeter wave systems.
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