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Decoupling Between Two Conductor
Microstrip Transmission Line
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Abstract—A numerical analysis of two-conductor transmission
line with a rectangular notch in the dielectric between the strips is
presented. Three media integral equations are derived and solved
for the charge distributions. The decoupling between such two-
conductor coupled microstrip transmission line is investigated for
asymmetric conductors. It is found that the coupling between
two conducting lines can be reduced significantly by removing
dielectric material between the lines which has a rectangular
shape. For best decoupling, the width should be as wide as
possible between the conducting lines but the depth should have
an optima somewhere in the base dielectric substrate.

1. INTRODUCTION

N THE LAST two decades, with the development of

electronic hardware, the trend of design has shifted from de-
pendence on both electrically and physically large components,
which are more independent of each other, to universal usage
of smaller and denser integrated circuits and systems which
are more tightly coupled. This appears to be continuing along
with the requirement for faster circuits and larger bandwidth.
With the universal use of smaller and denser circuits, the
operation of systems becomes much more dependent on how
signals propagate on the circuit interconnections. The related
coupling between circuit interconnections limits the bandwidth
of dense microwave circuits and the logic speed of digital
and computing circuits and systems. Previous study has been
devoted to characterize this circuit behavior based on planar
infinite-width substrate models [1]. However, it is extremely
important to find a practical method to minimize the coupling
between interconnecting lines.

In this investigation, attention is focused on the problem of
decoupling between a two-conductor microstrip transmission
line. One possible method is by employing a rectangular
dielectric notch between the two conducting lines as shown
in Fig. 1. The reduction of inter-line coupling can be accom-
plished by possible changes in the dimensions of the notch and
the relative permittivites of the substrate and notch region.

The transmission line problem shown in Fig. 1 can be
solved using a free-space Green’s function formulation in
terms of equivalent surface charge sources coupled with a
moment method solution [2] using a quasistatic TEM model.
This approach to planar type problems has been described
by Harrington and Pontoppidan [3], Adams and Mautz [4],
and, in a slightly different form, by Smith [5] and Smith
and Chang [6], [7]. A method for computing the normal
mode parameters of asymmetric coupled microstrip lines is
developed in [8]. Coupled integral equations are formed and
solved for the self and mutual capacitances of asymmetric

Ground plane

Fig. 1. Cross-section of the two-conductor microstrip transmission line.

lines by moment methods. The asymmetric transmission lines
with finite length are discussed by Tripathi [9]. Terminal
characteristic parameters (impedance, admittance, etc.) are
derived in terms of two independent modes that propagate
in two uniformly coupled propagating systems. The theory
of quasi-TEM modes on coupled transmission lines in terms
of voltage and current eigenvectors is developed by Kajfez
[10], [11]. It has been shown that the even and odd modes
are possible only when the coupled transmission line is of
symmetric shape.

In this paper, integral equations in terms of equivalent
charges and a free-space Green’s function are derived by
enforcing the proper boundary conditions. Here, an ideal
model is considered, where the conductors are assumed to
be perfect, the dielectric materials are assumed to be lossless
isotropic and homogeneous and the thickness of the conductor
is assumed to be zero. The formulation used in this study is
similar to those in [5]-[7], however it is applied here for a
slightly more complicated geometry. An attempt is made to
find a method to reduce the coupling between two-conductor
microstrip transmission line.

I1. BASIC FORMULATION

The integral equations related to this study are developed
by considering a two-dimensional boundary value problem.
The equations to be derived are valid for the general case of
three dielectric regions with perfectly conducting strips inside
one of these dielectric regions, as shown in Fig. 2. Region I
consists of a dielectric material of permittivity €1, bounded by
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Fig. 2. Generalized static problem.

contours C, and C, where C, = C' + C” + C"'. Region II
consists of a dielectric material with permittivity €2, bounded
by contours Cp and C,. Region III consists of a dielectric
material with permittivity es, bounded by contours C,;, Cy, Cy
and C; = C, + Cy + C.. Inside region III there are two
perfectly conducting strips C; and C3 with surface charges
ps1 and pga2. The potentials ¢cg, 1 and ¢ca are known and
are constant on Cy, (1, and C3, respectively. However, neither
¢ nor 9¢/dn are known on C,,Cy and C..
Laplace’s equation in the source-free region I is given by

V21(z,y) =0, ¢))

where the free-space Green’s function region

V2G0($,y;$/,y/) = —§($,y; xlay/)a (2)
can be considered with
1 1
Go(z,y;2',9') = ——In 3)

2 [(:L' — 1")2 + (y _ y/)z]l/z ’
where both the field point (z,y) and the source point (z/,y")
are on contours C, and C,.

An integral equation for ¢1(x,y) can be derived by multi-
plying (1) by G and (2) by ¢;. Then if these equations are
summed;

Gov? ¢1 — ¢1 V2 Go = 5¢1. )]
If both sides of (4) are integrated over the volume bounded by
Ca+C,, Green’s theorem can be applied to obtain the relation:

_ O 9Go
b1(z,y) = /C . {Go 4 _ 5,50 ]ds )

In region II, the same procedure can be applied to obtain:

o= [ [al 420

2 on

0, ] ds. 6)

In region III, the integral equation solution for Poisson’s
equation in terms of the source p, becomes:

1
¢3($,Z/)=—/ ps1GodS + — / ps2GodS
€G3 Jo Cy

o [ s
Co+Cp+Co

5~ s
A set of equations describing the potential everywhere can
then be obtained from (5), (6) and (7) as follows:
For region I:

¢1(x,y)=/ [ a¢1—¢1aG°}ds, (z,y) € L.
Co+C. (8)

Q)

and
oz/ {Go.a_qsl_ laaG"st (#,y) € 11 or IIL
Co+C
®
For region 1II:
0 oG
bawn) = [ |60 - S0 as, @wen
Cy—C.

(10)
and

0 :/ [ 92 _ ¢23G0} (z,y) € TorIIL
Cp—C,

(11)
For region III:
1 1
¢3(37, y) = / ps1GodS + — ps2Go dS
& Jo €3 Jo2
_/ [Go?ﬂ_ 3Go]ds (12)
Cat Cot-Co on 0
(z,y) e I
and
1 1
O0=— [ ps1GodS+ — | psaGodS
€3 Jo, €3 Jo,
d G
—/ {G 995 —¢3—9}ds (z,y) € TorIl.
Co+Cyp+Cy on
(13)

The potentials in (9), (11), and (13) vanish because the
regions of integration do not contain the delta function from
the Green’s function relation in (2). If the contour Cj is
assumed to approach infinity, the integration on that contour
does not contribute to the solution.

Equations (8) through (13) are combined by using the
boundary condition ¢; = ¢ on C.,é2 = ¢35 on Cp and
¢1 = ¢3 on C,, which leads to one equation valid for regions
I, II and III, ie.:

1
di(z,y) = —/ ps1GodS + — / ps2Go dS
€3 Cy o

g1 5¢3
+/CGG0|:E7'—_ on }ds

(14)
Ops O3
+/ch0{797“5n‘}dS
0 0
+LCG0[5%— a‘f’z}ds (z,y) €4

where 7 = I, II or IIL
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Since the integrand of the potential integral equation is
discontinuous on C}, it can be represented in terms of three
equivalent surface charge densities. Thus, this three-dielectric
region problem can be represented in terms of two sources,
ps1 and p,o, and three surface charge densities, o,, 03 and o,
residing on the interfaces of homogenous media C,,Cy and
C,, respectively. Therefore equation (14) reduces to

1 1
(ﬁ,’(.’t, y) = / ps1GodS + — ps2GodS
C:

0] €0 Jc,

1 1
+ 2 [ suGoas+ L / 2GedS  (15)
€ Jc, € Jo,
1
+— [ 0.GodS, (x,y)€i
€0 C.

where €3 is replaced by ¢g.

For this mathematical model, the normal component of
the displacement vector D is continuous on the contours
separating the regions. This condition leads to another inte-
gral equation in terms of equivalent surface charges. If the
derivative of (15) in the appropriate region is taken and the
condition

0

is enforced, along with the extraction of the principal value for
the improper integral as the field point (z,y) approaches the
contour C., another integral equation can be obtained [12].
After some mathematical manipulations, the application of
(16) gives the following three integral equations:

dGy dGo
€r1 — €& Ps —————dS+/ pPs2——dS
(o=l [ i+ [ o

o[ oty [ g5 [ o2,
A on Ch on C, on

+ (67'1 + 57-2)22E =0, (a:,y) € Cca
(17)
and
I9Gy Gy
€1 —1 / Ds ———dS+/ Pe2—dS
(era )[Cllan Cs 2 9n
+/ Ua?—g(—)ds-l—/ ob%ds—l—/ oc-a—@dS]
c, On c, On c, on
+(67‘1+1)%=07 (‘T7y) ECa,
(18)

Gy Gy
(61‘2 - 1) [/Cl psl—%ds + /C2 pSZ_b'TTdS

+/ aﬂgﬁdm/ o—b@du/ %@ds}
C, aTL Cy 8’"/ C, Bn

+(6r2+1)z2§ =03 (-/L"y) EOb,
a9
where €1 = €,16p and €2 = €,.0€p.
In order to specialize the general geometry in Fig. 2 to the
microstrip problem shown in Fig. 1, the contours C; and Cs

400 MAMAA A A 4 A N
{L 300
Q- L [} - »
\/200 . C11
O ° Cyp
100 - Cos
000 0 © O (¢} o (e}
0

0 0.0025 0.005 0.0075 0.01

1/N

(a)

250

200
~ 150
LL. * Gy
o
£ 100 © Cis
O so0

o L OO0 C O O © [e) e}
-50

0 0.0025 0.005 0.0075 0.01

1/N

(®)

Fig. 3. Convergence of capacitances. (a) Asymmetric. (b) Symmetric.

will touch ¢’ and C"”, respectively. The normal component
of the displacement vector D is then discontinuous by an
amount equal to the free-charge density on the conductors.
This discontinuity condition results in the following equation:

8Go aGO
(67'1 - 1) [/Cl psl'g;ds + /02 ps2—a_n“ds
oG
+/ aaa—G—OdS-{—/ Jb%ds—}—/ ac——OdS]
c, On c, On c. On
a s + 8
(e +1)Z + (e - DEELE =,

(z,y) € C'or C".
(20)

Equations (15), (17), (18), (19) and (20) represent a set of
integral equations which can be used to solve for the unknown
charge densities ps1, Ps2, 0, 0b and o, with known potential
¢c1 and ¢eo on the conductive contours C; and C;. These
equations can be reduced to a set of matrix equations by
using the method of moments. Pulse basis function and point
matching techniques using Dirac delta functions for testing are
employed for the numerical solution '[2], [12].

After these charge densities are obtained, the capacitances,
C11,C12,Cs1 and Cqo are easily derived. The characteristics
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Fig. 4. Charge distributions. (a) Single strip transmission line. (b) Symmetric
transmission line. (¢) Asymmetric transmission line.

impedances, relative permittivities, and phase velocities are
also computed based on the definitions in [11].

III. NUMERICAL RESULTS AND DISCUSSION

A general computer program has been written to obtain
numerical solutions for the microstrip transmission line shown
in Fig. 1. After these charge densities are obtained, the

TABLE I

COMPARISON OF COMPUTED RESULTS WITH THOSE
IN [13] FoR B/H = 0.2,¢;,; = 10,T/W =5

This work From [13]
W/H=1.0 Cy1 (pF/m) 141.48 141.77
Ci2 (pF/m) 56.44 57.56
€ce 7.222 7.209
€eo 5.713 5.699
Ve (10%m/s) 1.1164 1.1165
Vo (108m/s) 1.2551 1.2558
Zoe (ohm) 63.31 63.18
Zoo (ohm) 31.32 31.00
W/H=2.0 C1 (pF/m) 230.53 231.60
€ee 7.786 7.777
€eo 6.042 6.020
ve (103m/s) 1.0751 1.0750
Vo (10%m/s) 1.2205 1.2219
Zoe (0hm) 40.35 40.17
Zoo (ohm) 23.85 23.28
275
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Fig. 5. Capacitances versus €9 for L = 0.6H. (a) Cy1. (b) C1o.

capacitances of an asymmetric two-conductor microstrip trans-
mission line and all other parameters, such as characteristic
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Fig. 6. Capacitances versus €,2 for D = B. (a) C11. (b) Ci2.

impedances, phase velocities, and effective permittivities for a
symmetric microstrip transmission line, are determined.

The convergence of our numerical solution can be observed
in Fig. 3(a) and (b) for asymmetric and symmetric trans-
mission lines, respectively. In these figures the capacitances
based on the configuration shown in Fig. 1 versus N which
is the order of matrix involved in the solution with equal
segments for the expansion functions are shown. In Fig. 3(a),
wW./H = 1,Wy/W;, = 2,D/B = 1,L/H = 06,B/H =
1,T/W1 = 5,¢,1 = 16 and ¢, = 31. For this asymmetric
transmission line, the relative percentage error between the
extrapolated and computed values of the capacitances in this
study, with N = 480, for Cyy is about 1.5%, for Cj3 (or
Ca1) is about 4.1% and for Cyy is about 0.96%. Fig. 3(b)
shows the convergence of the capacitances based on the
best decoupling parameters for a symmetric transmission line
defined by Wi /H = 1,Wy/W, = 1,D/B = 1,L/H =
0.6,B/H =1,T/W; = 5,ep1 = 16 and ¢,3 = 1. The relative
percentage error between the extrapolated and the computed
values, with N = 640, for C1; (or Cap) is about 0.16% and
for Ci2 (or Co1) is about 4.7%.

In order to verify the numerical results generated by the
computer code, comparisons of few cases with published
data have been made. Fig. 4(a) shows the surface charge
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Fig. 7. Cdpacitances versus W2/W1. (a) C11. (b) Cia. (c) Caa.

on a single strip transmission line which is a limiting case
of the two conductor transmission line by setting L = 0
and B = 0 with W = W1 = W2,W/H = 1,67-1 = 16
and T/W = 5. The charge distribution in the figure is in
good agreement with those in Fig. 3 in [6]. In the figure, the
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Fig. 8. Capacitances versus L/H. (a) C1. (b) C12.

charge density is normalized by €y, in order to compare with
the data in [6]. Fig. 4(b) shows the charge distributions for
the even and odd modes of a symmetric line with ¢, =
16,B/H = 0.3,L = 0, and W/H = 1. These charges
match those in Fig. 9 in [13]. The charge distribution on
an asymmetric transmission line are shown in Fig. 4(c), for
Wl/H = 1,W2/W1 = Ol,B/H = OZ,L = 0, and €p1 = 9,
The computed charge, as shown, agrees with those reported in
Fig. 7 in [8]. Table I gives a comparison of the computed line
characteristic parameters with previously reported results [13]
for a symmetric transmission line with ¢,; = 10,B/H =
0.2,7/W = 5 and L = 0, which again indicates very
good agreement. Another attempt to validate the computer
code has been made by computing a two-conductor microstrip
transmission line without the notch, which is obtained by
letting €, = €1, where D and L can be any value satisfying
the relations D < B and L < H which gave the same
numerical results, although not shown here.

With the developed program, the transmission line param-
eters of the geometry in Fig. 1 such as self and mutual
capacitances, characteristic impedance, phase velocity, and
effective permittivity are studied. With W/H = 1,T/W =
5, B/H =1 and ¢,; = 16, the effects of D, L and €5 on
the self and mutual capacitances between these two strips are

260
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0 02 04 06 08 1
D/B

(b)
Fig. 9. Capacitances versus D/B. (a) C11. (b) Cio.

TABLE II
THE PARAMETERS FOR MINIMUM COUPLING
T €1 H B w2 w1 €0 D L
5.0 16 1.0 1.0 1.0 1.0 1 1.0 0.6
5.0 16 1.0 1.0 2.0 1.0 1 1.0 0.6
5.0 16 1.0 0.5 1.0 1.0 1 0.5 0.7
5.0 16 0.5 1.0 1.0 1.0 1 1.0 0.2
5.0 4.7 1.0 1.0 1.0 1.0 1 1.0 0.5
2.0 16 1.0 1.0 1.0 1.0 1 1.0 0.6

shown in Figs. 5 and 6. Fig. 5 shows the capacitances C7; and
C'12 versus €9 for L = 0.6H and D is a varying parameter,
while Fig. 6 shows the capacitances C1; and C12 versus ¢, for
D = B and L is a varying parameter. In order to investigate
the decoupling between the strips, the mutual-capacitance C1»
(or Cy1) is the most important factor to be discussed. As
can be seen, there is an intersection between the curves in
these figures. This occurs when €.5 = 16 (ie., €ro = €,1),
which means that there is no notch between the two strips.
At this point, the capacitances should have the same values
because the geometry is the same. From Figs. 5(b) and 6(b),
it can be seen that C, increases with ¢,.,. This means that
the minimum can be obtained when e,2 = 1, which represents
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Fig. 10. Potential distribution for even mode. (a) For first row in Table II.
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Fig. 12. Characteristic impedances. (a) Z, versus L/ H. (b) Z,, versus D/ B.

the air-dielectric notch. This property shows that a possible
method for reducing the coupling between the strip lines is by
removing a rectangular material from the substrate between
the conductors. Fig. 7 shows the effects of changing the width
of one strip on the capacitances for various value of ¢,2, where
W1=HT/W =5,L =06H,B=H, and ¢;; = 16. It is
clear that €.5 should be 1 in order to get the best decoupling.

Then, consider a symmetric geometry where W/H =
1,T/W = 5 B/H = 1l,e,1 = 16 and €5 is fixed to
be 1 which leads to a removed rectangular dielectric notch.
The influences of various D and L on the self and mutual
capacitances between the strips are shown in Figs. 8 and 9.
Fig. 8 shows the influences of various L with different D,
while Fig. 9 shows the influences of various D with different
L. After studying these figures, some important properties can
be seen. From Fig. 9(b), it can be easily seen that for best
decoupling D should be equal to B which means that, the
width of the material to be removed between the lines should
be as wide as possible. Furthermore, from Fig. 8(b), the curve
which represents D = B shows a minimum value for L/H.
This means, that for best decoupling the depth of the material
to be removed between the lines should be approximately
L/H = 0.6. Thus, for best decoupling, D = B and L = 0.6 H
for this microstrip line. It can be also shown in Figs. 8 and 9,
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12

Even mode

®

Fig. 13. Relative effective permittivities. (a) €55 versus L/H. (b) €yczy
versus D/ B.

that removing a dielectric notch forces the mutual-capacitance
to decrease significantly, however, the self-capacitances do not
show significant percentage variations.

The parameters for minimum coupling between the strips
for six different geometries of the microstrip transmission
line are computed and listed in Table II. Fig. 10(a) and (b)
show the potential distribution around the conducting strips
for transmission lines characterized by the parameters in the
first and second rows in Table II, respectively, when both strips
are charged to 1 V (even mode). Whereas Fig. 11(a) and (b)
show the corresponding potentials when one strip is charged
to 1 V and the other is charged to -1 V (odd mode).

Furthermore, the influences on the characteristic imped-
ances, effective permittivities and phase velocities are studied
for even and odd modes of a symmetric transmission line
with W1 = W2 = HT/W1 = 5,B/H = l,¢,4 = 16
and €5 = 1. Fig. 12-14 show the characteristic impedances
(Z,), the relative effective permittivity (e.f¢) and the phase
velocities (V') for even and odd modes versus L/H and D/B.
It has been found that all these parameters do not significantly
change, in relative percentages, compared with the changes in
the mutual-capacitance. Because the phase velocities for both
modes appear to change in the same proportion, the coupling
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Fig. 14. Phase velocities. (a) V" versus L/ H. (b) V versus D/B.

frequency characteristics will be the same as a related standard
microstrip directional coupler [14].

IV. CONCLUSION

A numerical solution for the analysis of a two-conductor
microstrip transmission line with a rectangular dielectric notch
between two conducting strips is presented. The procedure
consists of formulating the necessary three media integral
equations for the numerical solution for the charge distribu-
tions. The decoupling between such two-conductor microstrip
transmission line is investigated. The solution is based on a
quasi-TEM approach where the thickness of the conductors is
assumed to be zero.

The coupling between circuit interconnections limits the
bandwidth of dense microwave circuits and logic speed of
digital and computing circuits and systems. It has been shown
in this study that the coupling between two conducting lines
is minimized by removal of the dielectric material between
the lines. The mututal-capacitance varies significantly when
this method is employed. With the removal of a rectangular
shaped material, it is found that the width should be as wide
as possible between the conducting lines but the depth should
have an optimum value depending on the remaining param-
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eters. One example has been given for symmetric microstrip
transmission line.

This knowledge related to the physics of the interconnecting
line decoupling for dense integrated and microstrip circuits is
useful in the design and development of faster IC chips and
broader bandwidth microwave circuits for communications
required in future microwave and millimeter wave systems.
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